Predictive Analytics
Efficient Identification of Predictive Markers
Risk Prediction under Efficient Two-phase Study Designs
Machine Learning Approaches to Risk Prediction
Quantifying Prediction Performance
Research Team
Cai, Tianxi
Neykov, Matey
Parast, Layla
Tian, Lu
Uno, Hajime
Wei, Lee Jen
Selected Publications
M. Goodman, Lori B Chibnik, and T. Cai, 2019 “Variance Components Genetic Association Test for Zero-inflated Count Outcomes” Genetic Epidemiology, doi: 10.1002/gepi.22162.
J. Gronsbell, J. Minnier, S. Yu, K. Liao, and T. Cai, 2019 “Automated Feature Selection of Predictors in Electronic Medical Records Data.” Biometrics, doi: 10.1111/biom.12987.
C. Hong, K. Liao and T. Cai, 2019 “Semi-supervised Validation of Multiple Surrogate Outcomes with Application to Electronic Medical Records Phenotyping.” Biometrics, doi: 10.1111/biom.12971.
J. Gronsbell and T. Cai, 2018 “Semi-Supervised Approaches to Efficient Evaluation of Model Prediction Performance.” Journal of Royal Statistical Society, Series B, 80(3): 579–94.
J. Sinnott and T. Cai, 2018 “Pathway aggregation for survival prediction via multiple kernel learning.” Statistics in Medicine, 37(16), 2501-2515.
Zhou QM, Dai W, Zheng Y, Cai T, 2017 “Robust Dynamic Risk Prediction with Longitudinal Studies.” Stat Theory Related Fields; 1(2):159-170.
D. Agniel, T. Cai, 2017 “Analysis of multiple diverse phenotypes via semiparametric canonical correlation analysis.” Biometrics, 73(4): 1254-1265.
W. Dai, M. Yang, C. Wang, and T. Cai, 2017 “Sequence Robust Association Test (SRAT) for Familial Data.” Biometrics, 73 (3), 876-84.
Y. Zheng, M. Brown, A. Lok, T. Cai, 2017 “Improving Efficiency in Biomarker Incremental Value Evaluation under Two-phase Designs”. Annals of Applied Statistics, 11 (2), 638-54.
R. Payne, M. Yang, Y. Zheng, M. K. Jensen, T. Cai, 2016 “Robust Risk Prediction with Biomarkers under Two-Phase Stratified Cohort Design”. Biometrics, 72(4):1037–1045.
D. Agniel, K.P. Liao, T. Cai, 2016 “Estimation and testing for multiple regulation of multivariate mixed outcomes.” Biometrics Dec;72(4):1194-1205.
F. Yang, L. Tian, S. Yu, T. Cai and L.J. Wei, 2016 “Optimal stratification in outcome prediction using baseline information”. Biometrika, 103 (4), 817-28.
M. Neykov, J. Liu, and T. Cai, 2016 “On the Characterization of a Class of Fisher-Consistent Loss Functions and its Application to Boosting”. Journal of Machine Learning Research, 17(70), 1-32.
Y. Shen and T. Cai, 2016 “Identifying Predictive Markers for Personalized Treatment Selection”. Biometrics, 72(4), 1017-1025.
J. Minnier, M. Yuan, J. Liu and T. Cai, 2015 “Risk Classification with an Adaptive Naive Bayes KernelMachine Model.” Journal of the American Statistical Association, 110(509): 393-404.
Y. Shen, K. Liao, and T. Cai, 2015 “Sparse Kernel Machine Regression for Ordinal Outcomes”. Biometrics, 71(1):63-70.
T. Cai and Y. Zheng, 2013, “Resampling Procedures for Making Inference under Nested Case-control Studies”. Journal of the American Statistical Association, 108, 1532–1544.
J. Sinnott and T. Cai, 2013, “Omnibus Risk Assessment via Accelerated Failure Time Kernel Machine Modeling”. Biometrics, 69(4): 861-73.
L. Parast and T. Cai, 2013 “Landmark risk prediction of residual life for breast cancer survival”. Statistics in Medicine, 32(20): 3459-71.
L. Parast, S. Cheng and T. Cai, 2012 “Landmark Prediction of Long Term Survival Incorporating Short Term Event Time Information.” Journal of the American Statistical Association, 107, 1492-1501.
T. Cai, Y. Zheng, 2011 “Nonparametric Evaluation of Biomarker Accuracy Under Nested Case-Control Studies”. Journal of the American Statistical Association, 106, 569-580.